About us
Research Centers
Key Laboratories
Research
Faculty
CAS Members
Center for Genome Biology
Molecular Agrobiology
Developmental Biology
Molecular Systems Biology
Agro-Resources Research
International Cooperation
News
Resources
Education & Training
Join Us
Societies & Publications
Papers
Links
  Location: Home >> Faculty >> Faculty
  Faculty


Bing Wang


EDUCATION
2000-2004  Bachelor Degree of Life Science, Shandong Normal University
2004-2011  PhD of Genetics, Institute of Genetics and Developmental Biology, CAS
 
EMPLOYMENT
2011-2017  Research assistant, Institute of Genetics and Developmental Biology, CAS
2018-2020  Research associate, Institute of Genetics and Developmental Biology, CAS
2021-2025  Young Investigator, Institute of Genetics and Developmental Biology, CAS
2025-          Principal Investigator, Institute of Genetics and Developmental Biology, CAS
 
Selected Academic Honors
2025           Rising Stars in Plant Sciences 2025 (RSPS2025)
2024           Outstanding Editorial Group Member of NSR
2023           National Innovation Award Medal
2023           Outstanding Member of the Youth Innovation Promotion Association, CAS
2021           National Excellent Yong Scientists Fund, NSFC
2021           Outstanding Young Women Award
2019           Member of the Youth Innovation Promotion Association, CAS
 
PROFESSIONAL ACTIVITIES
2025-         Member, Editorial Board, Journal of Integrative Plant Biology
2024-         Member, Agricultural Proteomics, Chinese Society of Genetics
2024-         Editorial Group for Life Sciences, National Science Review
2023-         Academic Editor, The Innovation Life
2021-         Youth editor, The Innovation


RESEARCH INTEREST      
The phytohormone strigolactone (SL) is essential for plant development and adaptation to nutrient availability, especially shoot branching that determines panicle number and grain yield in crops. We primarily focus on research into SL pathways and have achieved a series of original findings regarding the regulation of plant architecture and environmental adaptability through SL pathway. These findings provide new targets and strategies for molecular design breeding aimed at reducing fertilizer use while increasing yield, as well as increasing disease resistance and while maintaining yield.
 
1. Mechanisms of SL biosynthesis and perception. We have discovered the regulatory mechanism of SL biosynthesis in response to low phosphorus and improved rice yield under a low-phosphorus environment through precise modification (Yuan, et al., Mol Plant, 2023). More importantly, we have elucidated the activation and termination mechanisms of SL perception and demonstrated that low nitrogen induces D14 phosphorylation and stabilizes D14 to repress tillering in rice. Precise modification on the phosphorylation sites of D14 significantly reduced the dependence of rice tillering on nitrogen fertilizer, with the number of tillers remaining unchanged when nitrogen fertilizer was reduced by 50% (Hu, et al., Cell, 2024). This work was highlighted by multiple international academic journals and commented as “providing key insights into plant adaptation to nutrient scarcity”.
 
2. Roles of repressor proteins in SL signaling pathway. Through the synthesis of new and effective compounds, we have systematically identified SL-responsive genes, revealed the genetic network involved in SL-regulated plant development, and discovered a novel mechanism through which transcriptional repressors of hormone signaling can directly recognize DNA and regulate transcription (Wang, et al., Nature, 2020). Interestingly, we further revealed that repressor proteins performed non-transcriptional activity by protecting PIF4,5 from degradation in red light responses, and established an in vitro recombination system for multi-subunit SCF E3 ubiquitin ligase, thus overcoming the bottlenecks in SL signaling research ( Liu, et al., Mol Plant, 2022; Chang, et al., Mol Plant, 2024).
 
3. Novel functions of SL in the rhizosphere. Through GWAS analysis of Orobanche resistance, we identified key genes encoding SL transporters that are responsible for SL secretion into the rhizosphere. This has enabled us to reduce parasitism by 80% and increase tomato yield by 30% in a Phelipanche-infested field, thus achieving a balance between broad-spectrum parasitic resistance and crop development (Ban, et al., Innovation, 2025). We also revealed that cyclo(Leu-Pro), produced by a tiller-inhibiting bacterium, activated the rice SL signaling pathway by directly binding to the SL receptor OsD14, thereby regulating tiller development (Zhang, et al., Cell, 2025). These novel mechanisms provide insights into how SL mediates sophisticated interactions in the rhizosphere and offer promising strategies to optimize agronomic traits and improve crop yield.

PUBLICATIONS
1.  Zhang J#, Wang B#, Xu H#, Liu W#, Yu J#, Wang Q#, Yu H#, Wei J#, Dai R, Zhou J, He Y, Zou D, Yang J, Ban X, Hu Q, Meng X, Hu B, Wang M, Xin P, Chu J, Li C, Garrido-Oter R, Yu P, Dijk A, Dong L, Bouwmeester H, Gao S*, Huang A*, Chu C*, Li J*, Bai Y*. (2025). Root Microbiota Regulates Tiller Number in Rice. Cell 188(12):3152-3166.
Highlighted with Commentary article in Cell Host Microbe., 33(6):934-936
Highlighted with Spotlight article in Mol. Plant doi.org/10.1016/j.molp.2025.06.006
 
2 Li Q#, Song X#*, Meng X, Zhang J, Zhang M, Chen LY, Li J*, Wang B*. (2025). Shaping Future Sugarcane: Ideal Plant Architecture and Breeding Strategies. Mol. Plant. 18(5): 725-728.
 
3 Ban X, Qin L, Yan J, Wu J, Li Q, Su X, Hao Y, Hu Q, Kou L, Yan Z, Xin P, Zhang Y, Dong L, Bouwmeester H, Yu H, Yu Q, Huang S, Lin T, Xie Q, Chen Y, Chu J, Cui X*, Li J*, Wang B*. (2025). Manipulation of a strigolactone transporter in tomato confers resistance to the parasitic weed broomrape, Innovation 6(3):100815.
Highlighted with Commentary article in Plant Cell Environ. 48(8):6066-6069.
Highlighted with Spotlight article in J. Integr. Plant Biol., doi: 10.1111/jipb.13937
 
4 Shi J, Mei C, Ge F, Hu Q, Ban X, Xia R, Xin P, Cheng S, Zhang G, Nie J, Zhang S, Ma X, Wang Y, Chu J, Chen Y, Wang B, Wu W, Li J*, Xie Q*, Yu F*. (2025). Resistance to Striga parasitism through reduction of strigolactone exudation. Cell. 188(7): 1955-1966.
 
5 Hu Q, Liu H, He Y, Hao Y, Yan J, Liu S, Huang X, Yan Z, Zhang D, Ban X, Zhang H, Li Q, Zhang J, Xin P, Jing Y, Kou L, Sang D, Wang Y, Wang Y, Meng X, Fu X, Chu J, Wang B*, Li J. (2024). Regulatory Mechanisms of Strigolactone Perception in Rice. Cell 187(26):7551-7567.
Highlighted with Spotlight article in Dev. Cell, 60(1): 5-7
Highlighted with Spotlight article in Mol. Plant, 18(1): 14-16
Highlighted with Spotlight article in Trends Plant Sci., 30(6):588-590
Highlighted with Spotlight article in Innov. Life 3(3):100137
Highlighted with Spotlight article in Chin Bull Bot 59(6): 1-5
 
6 Chang W, Qiao Q, Li Q, Li X, Li Y, Huang X, Wang Y, Li J, Wang B*, Wang L*. (2024). Non-transcriptional regulatory activity of SMAX1 and SMXL2 mediates karrikin-regulated seedling response to red light in Arabidopsis. Mol. Plant. 17(7):1054-1072
 
7 Ye H, Hou Q, Lv H, Shi H, Wang D, Chen Y, Xu T, Wang M, He M, Yin J, Lu X, Tang Y, Zhu X, Zou L, Chen X, Li J, Wang B*, Wang J*. (2024). D53 represses rice blast resistance by directly targeting phenylalanine ammonia lyases. J. Integr. Plant Biol. 66(9):1827-1830
 
8 Cheng Q, Li J, Wang B*. (2024). ABP1/ABLs and TMKs form receptor complexes to perceive extracellular auxin and trigger fast phosphorylation responses. Innov. Life 2(2): 100063.
 
9 Luo M*, Yang W, Bai L, Zhang L, Huang J, Cao Y, Xie Y, Tong L, Zhang H, Yu L, Zhou L, Shi Y, Yu P, Wang Z, Yuan Z, Zhang P, Zhang Y, Ju F, Zhang H, Wang F, Cui Y, Zhang J, Jia G, Wan D, Ruan C, Zeng Y, Wu P, Gao Z, Zhao W, Xu Y, Yu G, Tian C, Jin L, Dai J*, Xia B*, Sun B*, Chen F*, Gao Y*, Wang H*, Wang B*Zhang D*, Cao X*, Wang H*, Huang T*. (2024). Artificial intelligence for life sciences: A comprehensive guide and future trends. Innov. Life 2(4): 100105.
 
10. Li Q, Wang B, Yu H*. (2024). New mechanism of strigolactone-regulated cold tolerance in tomato. New Phytol. 245(3):921-923.
 
11. Yuan K#, Zhang H#, Yu C#, Luo N, Yan J, Zheng S, Hu Q, Zhang D, Kou L, Meng X, Jing Y, Chen M, Ban X, Yan Z, Lu Z, Wu J, Zhao Y, Liang Y, Wang Y, Xiong G, Chu J, Wang E, Li J, Wang B*. (2023) Low phosphorus promotes NSP1-NSP2 heterodimerization to enhance strigolactone biosynthesis and regulate shoot and root architectures in rice. Mol. Plant 16(11):1811-1831.
Highlighted with Spotlight article in Trends Plant Sci., 29(5): 501-503
Highlighted with Spotlight article in Mol. Plant, 17(1): 19-21
Highlighted with Spotlight article in Sci. China Life Sci., 67(2): 428-430
Highlighted with Spotlight article in Chin Sci. Bull., 69(2): 143-145
 
12. Liu S, Wang J, Song B, Gong X, Liu H, Hu Q, Zhang J, Li Q, Zheng J, Wang H*, Xu HE*, Li J*, Wang B*. (2023) Conformational Dynamics of the D53-D3-D14 Complex in Strigolactone Signaling. Plant Cell Physiol. 64(9):1046-1056.
 
13. Li X #, Yan Z#, Zhang M, Wang J, Xin P, Cheng S, Kou L, Zhang X, Wu S, Chu J, Yi C, Ye K, Wang B*, Li J*. (2023). SnoRNP is essential for thermospermine-mediated development in Arabidopsis thaliana. Sci. China Life Sci. 66:2-11. (Cover story)
 
14. Li X#, Lei C#, Song Q, Bai L, Cheng B, Qin K, Li X, Ma B, Wang B, Zhou W, Chen X*, Li J*. (2023) Chemoproteomic profiling of O-GlcNAcylated proteins and identification of O-GlcNAc transferases in rice. Plant Biotechnol. J. 21 (4):742-753.
 
15. Liu H, Liu S, Yu H, Huang X, Wang Y, Jiang L, Meng X, Liu G, Chen M, Jing Y, Yu F, Wang B*, Li J*.(2022) An engineered platform for reconstituting functional multisubunit SCF E3 ligase in vitro. Mol. Plant 15: 1285-1299.
Highlighted with Spotlight article in Mol. Plant, 15(11): 1654-1655
 
16. Jia M#, Luo N#, Meng X, Song X, Jing Y, Kou L, Liu G, Huang X, Wang Y, Li J, Wang B*, Yu H*. (2022) OsMPK4 promotes phosphorylation and degradation of IPA1 in response to salt stress to confer salt tolerance in rice. J. Genet. Genomics 49: 766-775.
 
17. Song X, Meng X, Guo H, Cheng Q, Jing Y, Chen M, Liu G, Wang B, Wang Y, Li J, Yu H. (2022) Targeting a gene regulatory element enhances rice grain yield by decoupling panicle number and size. Nat. Biotechnol.. 40: 1403. (Highly Cited Paper)
 
18. Chen R#, Deng Y#, Ding Y#, Guo J#, Qiu J#, Wang B#, Wang C#, Xie Y#, Zhang Z#, Chen J, Chen L, Chu C, He G, He Z, Huang X, Xing Y, Yang S, Xie D*, Liu Y*, Li J*. (2022). Rice functional genomics: decades’ efforts and roads ahead. Sci. China Life Sci. 65:33-92. (Highly Cited Paper)
 
19. Wang, B and Li, J. (2021). Rice geographic adaption to poor soil: novel insights for sustainable agriculture. Mol. Plant 14: 369-371.
 
20. Wang, L#, Wang, B#*, Yu H, Guo H, Lin T, Kou L, Wang A, Shao N, Ma H, Xiong G, Li X, Yang J, Chu J, and Li, J*. (2020). Transcriptional regulation of strigolactone signalling in Arabidopsis. Nature 583: 277-281. (Highly Cited Paper)
Highlighted with Spotlight article in Trends Plant Sci., 25(10): 960-963;
Highlighted with Spotlight article in Mol. Plant, 13(9): 1244-1246;
Highlighted with Spotlight article in Sci. China Life Sci 63(11): 1768-1770;
Highlighted with Spotlight article in Chin Bull Bot 55(3): 1-7
 
21. Liu X#, Hu Q#, Yan J#, Sun K, Liang Y, Jia M, Meng X, Fang S, Wang Y, Jing Y, Liu G, Wu D, Chu C, Smith S M, Chu J*, Wang Y, Li J, and Wang B*. (2020). zeta-Carotene Isomerase Suppresses Tillering in Rice through the Coordinated Biosynthesis of Strigolactone and Abscisic Acid. Mol. Plant 13: 1784-1801.
 
22. Wang, L#, Xu, Q#, Yu, H, Ma, H, Li, X, Yang, J, Chu, J, Xie Q, Wang Y, Smith, SM, Li, J, Xiong, G*, and Wang, B*. (2020). Strigolactone and karrikin signaling pathways elicit ubiquitination and proteolysis of SMXL2 to regulate hypocotyl elongation in Arabidopsis thaliana. Plant Cell 32: 2251-2270. (Highly Cited Paper)
 
23. Wang Y#, Shang L#, Yu H#, Zeng L#, Hu J, Ni S, Rao Y, Li S, Chu J, Meng X, Wang L, Hu P, Yan J, Kang S, Qu M, Lin H, Wang T, Wang Q, Hu X, Chen H, Wang B, Gao Z, Guo L, Zeng D, Zhu X, Xiong G*, Li J*, and Qian Q*. (2020). A strigolactone biosynthesis gene contributed to the green revolution in rice. Mol. Plant 13, 923-932.
 
24. Zheng J#, Hong K#, Zeng L#, Wang L, Kang S, Qu M, Dai J, Zou L, Zhu L, Tang Z, Meng X, Wang B, Hu J, Zeng D, Zhao Y, Cui P, Wang Q, Qian Q, Wang Y, Li J, and Xiong G. (2020). Karrikin Signaling Acts Parallel to and Additively with Strigolactone Signaling to Regulate Rice Mesocotyl Elongation in Darkness. Plant Cell 32, 2780-2805.
 
25. Wang B and Li J (2019). Understanding the molecular bases of agronomic trait improvement in rice. Plant Cell 31: 1416-1417.
 
26. Shao G#, Lu Z#, Xiong J, Wang B, Jing Y, Meng X, Liu G, Ma H, Liang Y, Chen F, Wang Y, Li J, Yu H (2019). Tiller bud formation regulators MOC3 and MOC1 cooperatively promote tiller bud outgrowth by activating FON1 expression in rice. Mol Plant. 12, 1090-1102.
 
27. Wang B, Smith SM*, and Li J*. (2018). Genetic control of shoot architecture. Annu. Rev. Plant Biol. 69: 437-468. (Highly Cited Paper)
 
28. Yao R#, Wang L#, Li Y#, Chen L#, Li S, Du X, Wang B, Yan J, Li J*, and Xie D*. (2018). Rice DWARF14 acts as an unconventional hormone receptor for strigolactones. J. Exp. Bot. 69: 2355-2365.
 
29. Bai, S, Yu, H, Wang, B, and Li, J (2018). Retrospective and perspective of rice breeding in China. J. Genet. Genomics 45, 603-612.
 
30. Wang B, Wang Y, Li, J. (2017). Strigolactones. In: Hormone Metabolism and Signaling in Plants (eds. Li J, Li C, Smith SM) Academic Press Elsevier (London UK), 327-359.
 
31. Hu Q#, He Y#, Wang L, Liu S, Meng X, Liu G, Jing Y, Chen M, Song X, Jiang L, Yu H, Wang B*, and Li J* (2017). DWARF14, a receptor covalently linked with the active form of strigolactones, undergoes strigolactone-dependent degradation in rice. Front. Plant Sci. 8: 1935.
 
32. Wang B#, Chu J#, Yu T#, Xu Q, Sun X, Yuan J, Xiong G, Wang G, Wang Y, and Li J (2015). Tryptophan-independent auxin biosynthesis contributes to early embryogenesis in Arabidopsis. Proc. Natl. Acad. Sci. USA 112: 4821-4826.
Selected for F1000 Prime
 
33. Wang L#, Wang B #, Jiang L, Liu X, Li X, Lu Z, Meng X, Wang Y, Smith SM, and Li J (2015). Strigolactone signaling in Arabidopsis regulates shoot development by targeting D53-Like SMXL repressor proteins for ubiquitination and degradation. Plant Cell 27: 3128-3142. (Highly Cited Paper)
Highlighted with an In Brief article in Plant Cell 27(11):3022-3023,
 
34. Zhang R, Wang B, Li J and Wang Y (2008) Arabidopsis Indole synthase (INS), a homolog of Trp synthase (TSA1), is an enzyme involved in Trp-independent metabolites biosynthesis pathway. J Integ Plant Biol 50: 1070-1077.
 
35. Wang B, Li J and Wang Y (2006) Advances in understanding roles of auxin involved in modulating plant architecture. Chin Bull Bot23: 443-458.
 
PATENTS
United States 18/323,983; Method for Preparing Multisubunit SCF E3 Ligase with Fusion Protein through in vitro Reconstitution, and Use of Multisubunit SCF E3 Ligase; J. Li, B. Wang, H. Liu, H. Yu, X. Meng, G. Liu, M. Chen, Y. Jing.
 
ZL202210697914.2 An in vitro recombinant rice SCF(D3)E3 ligase and its application. J. Li, B. Wang, H. Liu, H. Yu, X. Meng, G. Liu, M. Chen, Y. Jing.
 
ZL202210696862.7 Method and application of recombinant multi-subunit SCF E3 ligase using fusion protein in vitro. J. Li, B. Wang, H. Liu, H. Yu, X. Meng, G. Liu, M. Chen, Y. Jing.